Mass spectrometry imaging as an emerging tool for studying metabolism in human brain organoids

质谱成像技术作为研究人脑类器官代谢的新兴工具

阅读:1
作者:Gerarda Cappuccio ,Saleh M Khalil ,Sivan Osenberg ,Feng Li ,Mirjana Maletic-Savatic

Abstract

Human brain organoids are emerging models to study human brain development and pathology as they recapitulate the development and characteristics of major neural cell types, and enable manipulation through an in vitro system. Over the past decade, with the advent of spatial technologies, mass spectrometry imaging (MSI) has become a prominent tool for metabolic microscopy, providing label-free, non-targeted molecular and spatial distribution information of the metabolites within tissue, including lipids. This technology has never been used for studies of brain organoids and here, we set out to develop a standardized protocol for preparation and mass spectrometry imaging of human brain organoids. We present an optimized and validated sample preparation protocol, including sample fixation, optimal embedding solution, homogenous deposition of matrices, data acquisition and processing to maximize the molecular information derived from mass spectrometry imaging. We focus on lipids in organoids, as they play critical roles during cellular and brain development. Using high spatial and mass resolution in positive- and negative-ion modes, we detected 260 lipids in the organoids. Seven of them were uniquely localized within the neurogenic niches or rosettes as confirmed by histology, suggesting their importance for neuroprogenitor proliferation. We observed a particularly striking distribution of ceramide-phosphoethanolamine CerPE 36:1; O2 which was restricted within rosettes and of phosphatidyl-ethanolamine PE 38:3, which was distributed throughout the organoid tissue but not in rosettes. This suggests that ceramide in this particular lipid species might be important for neuroprogenitor biology, while its removal may be important for terminal differentiation of their progeny. Overall, our study establishes the first optimized experimental pipeline and data processing strategy for mass spectrometry imaging of human brain organoids, allowing direct comparison of lipid signal intensities and distributions in these tissues. Further, our data shed new light on the complex processes that govern brain development by identifying specific lipid signatures that may play a role in cell fate trajectories. Mass spectrometry imaging thus has great potential in advancing our understanding of early brain development as well as disease modeling and drug discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。