Resolvin D1 via prevention of ROS-mediated SHP2 inactivation protects endothelial adherens junction integrity and barrier function

Resolvin D1 通过预防 ROS 介导的 SHP2 失活来保护内皮黏附连接完整性和屏障功能

阅读:3
作者:Rima Chattopadhyay, Somasundaram Raghavan, Gadiparthi N Rao

Abstract

Resolvins are a novel class of lipid mediators that play an important role in the resolution of inflammation, although the underlying mechanisms are not very clear. To explore the anti-inflammatory mechanisms of resolvins, we have studied the effects of resolvin D1 (RvD1) on lipopolysaccharide (LPS)-induced endothelial barrier disruption as it is linked to propagation of inflammation. We found that LPS induces endothelial cell (EC) barrier disruption via xanthine oxidase (XO)-mediated reactive oxygen species (ROS) production, protein tyrosine phosphatase SHP2 inactivation and Fyn-related kinase (Frk) activation leading to tyrosine phosphorylation of α-catenin and VE-cadherin and their dissociation from each other affecting adherens junction (AJ) integrity and thereby increasing endothelial barrier permeability. RvD1 attenuated LPS-induced AJ disassembly and endothelial barrier permeability by arresting tyrosine phosphorylation of α-catenin and VE-cadherin and their dislocation from AJ via blockade of XO-mediated ROS production and thereby suppression of SHP2 inhibition and Frk activation. We have also found that the protective effects of RvD1 on EC barrier function involve ALX/FPR2 and GPR32 as inhibition or neutralization of these receptors negates its protective effects. LPS also increased XO activity, SHP2 cysteine oxidation and its inactivation, Frk activation, α-catenin and VE-cadherin tyrosine phosphorylation and their dissociation from each other leading to AJ disruption with increased vascular permeability in mice arteries and RvD1 blocked all these effects. Thus, RvD1 protects endothelial AJ and its barrier function from disruption by inflammatory mediators such as LPS via a mechanism involving the suppression of XO-mediated ROS production and blocking SHP2 inactivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。