Spatiotemporally controlled overexpression of cyclin D1 triggers generation of supernumerary cells in the postnatal mouse inner ear

时空控制的细胞周期蛋白D1过度表达引发出生后小鼠内耳中多余细胞的产生

阅读:6
作者:Shikha Tarang, Umesh Pyakurel, Michael D Weston, Sarath Vijayakumar, Timothy Jones, Kay-Uwe Wagner, Sonia M Rocha-Sanchez

Abstract

The retinoblastoma family of pocket proteins (pRBs), composed of Rb1, p107, and p130 are negative regulators of cell-cycle progression. The deletion of any individual pRB in the auditory system triggers hair cells' (HCs) and supporting cells' (SCs) proliferation to different extents. Nevertheless, accessing their combined role in the inner ear through conditional or complete knockout methods is limited by the early mortality of the triple knockout. In quiescent cells, hyperphosphorylation and inactivation of the pRBs are maintained through the activity of the Cyclin-D1-cdk4/6 complex. Cyclin D1 (CycD1) is expressed in the embryonic and neonatal inner ear. In the mature organ of Corti (OC), CycD1 expression is significantly downregulated, paralleling the OC mitotic quiescence. Earlier studies showed that CycD1 overexpression leads to cell-cycle reactivation in cultures of inner ear explants. Here, we characterize a Cre-activated, Doxycycline (Dox)-controlled, conditional CycD1 overexpression model, which when bred to a tetracycline-controlled transcriptional activator and the Atoh1-cre mouse lines, allow for transient CycD1 overexpression and pRBs' downregulation in the inner ear in a reversible fashion. Analyses of postnatal mice's inner ears at various time points revealed the presence of supernumerary cells throughout the length of the cochlea and in the vestibular end-organs. Notably, most supernumerary cells were observed in the inner hair cells' (IHCs) region, expressed myosin VIIa (M7a), and showed no signs of apoptosis at any of the time points analyzed. Auditory and vestibular phenotypes were similar between the different genotypes and treatment groups. The fact that no significant differences were observed in auditory and vestibular function supports the notion that the supernumerary cells detected in the adult mice cochlea and macular end-organs may not impair auditory functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。