Potential role of PUMA in delayed death of hippocampal CA1 neurons after transient global cerebral ischemia

PUMA 在短暂性全脑缺血后海马 CA1 神经元延迟死亡中的潜在作用

阅读:3
作者:Kuniyasu Niizuma, Hidenori Endo, Chikako Nito, D Jeannie Myer, Pak H Chan

Background and purpose

p53-upregulated modulator of apoptosis (PUMA), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and -independent forms of apoptosis. PUMA localizes to mitochondria and interacts with antiapoptotic Bcl-2 and Bcl-X(L) or proapoptotic Bax in response to death stimuli. Although studies have shown that PUMA is associated with pathomechanisms of cerebral ischemia, clearly defined roles for PUMA in ischemic neuronal death remain unclear. The purpose of this study was to determine potential roles for PUMA in cerebral ischemia.

Conclusions

These results imply a potential role for PUMA in delayed CA1 neuronal death after tGCI and that it could be a molecular target for therapy.

Methods

Five minutes of transient global cerebral ischemia (tGCI) were induced by bilateral common carotid artery occlusion combined with hypotension.

Purpose

p53-upregulated modulator of apoptosis (PUMA), a BH3-only member of the Bcl-2 protein family, is required for p53-dependent and -independent forms of apoptosis. PUMA localizes to mitochondria and interacts with antiapoptotic Bcl-2 and Bcl-X(L) or proapoptotic Bax in response to death stimuli. Although studies have shown that PUMA is associated with pathomechanisms of cerebral ischemia, clearly defined roles for PUMA in ischemic neuronal death remain unclear. The purpose of this study was to determine potential roles for PUMA in cerebral ischemia.

Results

PUMA was upregulated in vulnerable hippocampal CA1 neurons after tGCI as shown by immunohistochemistry. In Western blot and coimmunoprecipitation analyses, PUMA localized to mitochondria and was bound to Bcl-X(L) and Bax in the hippocampal CA1 subregion after tGCI. PUMA upregulation was inhibited by pifithrin-alpha, a specific inhibitor of p53, suggesting that PUMA is partly controlled by the p53 transcriptional pathway after tGCI. Furthermore, reduction in oxidative stress by overexpression of copper/zinc superoxide dismutase, which is known to be protective of vulnerable ischemic hippocampal neurons, inhibited PUMA upregulation and subsequent hippocampal CA1 neuronal death after tGCI. Conclusions: These results imply a potential role for PUMA in delayed CA1 neuronal death after tGCI and that it could be a molecular target for therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。