Anti-fibrogenic effect of umbilical cord-derived mesenchymal stem cell-conditioned media in human esophageal fibroblasts

脐带间充质干细胞培养基对人食管成纤维细胞的抗纤维化作用

阅读:5
作者:Yoon Jeong Choi #, Jee Hyun Kim #, Yeonju Lee, Hee Jang Pyeon, In Kyung Yoo, Jun Hwan Yoo

Abstract

Esophageal fibrosis can develop due to caustic or radiation injuries. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are known to mitigate fibrosis in various organs. However, the potential effects of UC-MSCs on human esophageal fibrosis remain underexplored. This study investigated the anti-fibrogenic properties and mechanisms of UC-MSC-derived conditioned media (UC-MSC-CM) on human esophageal fibroblasts (HEFs). HEFs were treated with TGF-β1 and then cultured with UC-MSC-CM, and the expression levels of extracellular matrix (ECM) components, RhoA, myocardin related transcription factor A (MRTF-A), serum response factor (SRF), Yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ) were measured. UC-MSC-CM suppressed TGF-β1-induced fibrogenic activation in HEFs, as evidenced by the downregulation of ECM. UC-MSC-CM diminished the expression of RhoA, MRTF-A, and SRF triggered by TGF-β1. In TGF-β1-stimulated HEFs, UC-MSC-CM decreased the nuclear localization of MRTF-A and YAP. Additionally, UC-MSC-CM diminished the TGF-β1-induced nuclear expressions of YAP and TAZ, while concurrently enhancing the cytoplasmic presence of phosphorylated YAP. Furthermore, UC-MSC-CM reduced TGF-β1-induced phosphorylation of Smad2. These findings suggest that UC-MSC-CM may inhibit TGF-β1-induced fibrogenic activation in HEFs by targeting the Rho-mediated MRTF/SRF and YAP/TAZ pathways, as well as the Smad2 pathway. This indicates its potential as a stem cell therapy for esophageal fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。