Impaired 26S Proteasome Assembly Precedes Neuronal Loss in Mutant UBQLN2 Rats

26S 蛋白酶体组装受损导致 UBQLN2 突变大鼠出现神经元丢失

阅读:4
作者:Wenjuan Zhang, Bo Huang, Limo Gao, Cao Huang

Abstract

Proteasomal dysfunction is known to be associated with amyotrophic lateral sclerosis and frontotemporal degeneration (ALS/FTD). Our previous reports have shown that a mutant form of ubiquilin-2 (UBQLN2) linked to ALS/FTD leads to neurodegeneration accompanied by accumulations of the proteasome subunit Rpt1 in transgenic rats, but the precise pathogenic mechanisms of how this mutation impairs the proteasome remains to be elucidated. Here, we reveal that this UBQLN2 mutation in rats disrupted the proteasome integrity prior to neurodegeneration, that it dissociated the 26S proteasome in vitro, and that its depletion did not affect 26S proteasome assembly. During both disease progression and in an age-dependent manner, we found that proteasome subunits were translocated to the nucleus, including both of the 20S core particles (PSMA1 and PSMB7) and the 19S regulatory particles (Rpt1 and Rpn1), suggesting that defective proteasome function may result from the proteasome-subunit mislocalization. Taken together, the present data demonstrate that impaired proteasome assembly is an early event in the pathogenesis of UBQLN2-associated neurodegeneration in mutant UBQLN2 rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。