The Alteration of L-Carnitine Transport and Pretreatment Effect under Glutamate Cytotoxicity on Motor Neuron-Like NSC-34 Lines

谷氨酸细胞毒性对运动神经元样 NSC-34 系 L-肉碱转运和预处理效应的影响

阅读:9
作者:Asmita Gyawali, Seung Jae Hyeon, Hoon Ryu, Young-Sook Kang

Abstract

L-Carnitine (LC) is essential for transporting fatty acids to the mitochondria for β-oxidation. This study was performed to examine the alteration of the LC transport system in wild type (WT, NSC-34/hSOD1WT) and mutant type (MT, NSC-34/hSOD1G93A) amyotrophic lateral sclerosis (ALS) models. The uptake of [3H]L-carnitine was dependent on time, temperature, concentration, sodium, pH, and energy in both cell lines. The Michaelis-Menten constant (Km) value as well as maximum transport velocity (Vmax) indicated that the MT cell lines showed the higher affinity and lower capacity transport system, compared to that of the WT cell lines. Additionally, LC uptake was inhibited by organic cationic compounds but unaffected by organic anions. OCTN1/slc22a4 and OCTN2/slc22a5 siRNA transfection study revealed both transporters are involved in LC transport in NSC-34 cell lines. Additionally, slc22a4 and slc22a5 was significantly decreased in mouse MT models compared with that in ALS WT littermate models in the immune-reactivity study. [3H]L-Carnitine uptake and mRNA expression pattern showed the pretreatment of LC and acetyl L-carnitine (ALC) attenuated glutamate induced neurotoxicity in NSC-34 cell lines. These findings indicate that LC and ALC supplementation can prevent the neurotoxicity and neuro-inflammation induced by glutamate in motor neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。