Neuroinflammatory Response to TNFα and IL1β Cytokines Is Accompanied by an Increase in Glycolysis in Human Astrocytes In Vitro

TNFα 和 IL1β 细胞因子的神经炎症反应伴随着体外人类星形胶质细胞糖酵解的增加

阅读:11
作者:David Pamies, Chiara Sartori, Domitille Schvartz, Víctor González-Ruiz, Luc Pellerin, Carolina Nunes, Denise Tavel, Vanille Maillard, Julien Boccard, Serge Rudaz, Jean-Charles Sanchez, Marie-Gabrielle Zurich

Abstract

Astrogliosis has been abundantly studied in rodents but relatively poorly in human cells due to limited access to the brain. Astrocytes play important roles in cerebral energy metabolism, and are also key players in neuroinflammation. Astroglial metabolic and inflammatory changes as a function of age have been reported, leading to the hypothesis that mitochondrial metabolism and inflammatory responses are interconnected in supporting a functional switch of astrocytes from neurotrophic to neurotoxic. This study aimed to explore the metabolic changes occurring in astrocytes during their activation. Astrocytes were derived from human ReN cell neural progenitors and characterized. They were activated by exposure to tumor necrosis factor alpha (TNFα) or interleukin 1β (IL1β) for 24 h. Astrocyte reaction and associated energy metabolic changes were assessed by immunostaining, gene expression, proteomics, metabolomics and extracellular flux analyses. ReN-derived astrocytes reactivity was observed by the modifications of genes and proteins linked to inflammation (cytokines, nuclear factor-kappa B (NFκB), signal transducers and activators of transcription (STATs)) and immune pathways (major histocompatibility complex (MHC) class I). Increased NFκB1, NFκB2 and STAT1 expression, together with decreased STAT3 expression, suggest an activation towards the detrimental pathway. Strong modifications of astrocyte cytoskeleton were observed, including a glial fibrillary acidic protein (GFAP) decrease. Astrogliosis was accompanied by changes in energy metabolism characterized by increased glycolysis and lactate release. Increased glycolysis is reported for the first time during human astrocyte activation. Astrocyte activation is strongly tied to energy metabolism, and a possible association between NFκB signaling and/or MHC class I pathway and glycolysis is suggested.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。