Dimethyl Fumarate Strongly Ameliorates Gray and White Matter Brain Injury and Modulates Glial Activation after Severe Hypoxia-Ischemia in Neonatal Rats

富马酸二甲酯可有效改善新生大鼠灰质和白质脑损伤并调节重度缺氧缺血后的神经胶质细胞活化

阅读:7
作者:Jon Ander Alart, Antonia Álvarez, Ana Catalan, Borja Herrero de la Parte, Daniel Alonso-Alconada

Abstract

Neonatal hypoxia-ischemia is a major cause of infant death and disability. The only clinically accepted treatment is therapeutic hypothermia; however, cooling is less effective in the most severely encephalopathic infants. Here, we wanted to test the neuroprotective effect of the antioxidant dimethyl fumarate after severe hypoxia-ischemia in neonatal rats. We used a modified Rice-Vannucci model to generate severe hypoxic-ischemic brain damage in day 7 postnatal rats, which were randomized into four experimental groups: Sham, Sham + DMF, non-treated HI, and HI + DMF. We analyzed brain tissue loss, global and regional (cortex and hippocampus) neuropathological scores, white matter injury, and microglial and astroglial reactivity. Compared to non-treated HI animals, HI + DMF pups showed a reduced brain area loss (p = 0.0031), an improved neuropathological score (p = 0.0016), reduced white matter injuries by preserving myelin tracts (p < 0.001), and diminished astroglial (p < 0.001) and microglial (p < 0.01) activation. After severe hypoxia-ischemia in neonatal rats, DMF induced a strong neuroprotective response, reducing cerebral infarction, gray and white matter damage, and astroglial and microglial activation. Although further molecular studies are needed and its translation to human babies would need to evaluate the molecule in piglets or lambs, DMF may be a potential treatment against neonatal encephalopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。