Inducible gene deletion in the entire cardiac conduction system using Hcn4-CreERT2 BAC transgenic mice

使用 Hcn4-CreERT2 BAC 转基因小鼠诱导整个心脏传导系统的基因缺失

阅读:6
作者:Meng Wu, Siwu Peng, Yong Zhao

Abstract

Developmental defects and disruption of molecular pathways of the cardiac conduction system (CCS) can cause life-threatening cardiac arrhythmias. Despite decades of effort, knowledge about the development and molecular control of the CCS remains primitive. Mouse genetics, complementary to other approaches such as human genetics, has become a key tool for exploring the developmental processes of various organs and associated diseases. Genetic analysis using mouse models will likely provide great insights about the development of the CCS, which can facilitate the development of novel therapeutic strategies to treat arrhythmias. To enable genetic studies of the CCS, CCS-associated Cre mouse models are essential. However, existing mouse models with Cre activity reported in the CCS have various limitations such as Cre leak, haploinsufficiency, and inadequate specificity of the Cre activity. To circumvent those limitations, we successfully generated Hcn4-CreERT2 bacterial artificial chromosome (BAC) transgenic mice using BAC recombineering in which Cre activity was specifically detected in the entire CCS after tamoxifen induction. Our Hcn4-CreERT2 BAC transgenic line will be an invaluable genetic tool with which to dissect the developmental control of CCS and arrhythmias.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。