Improving Circulation Half-Life of Therapeutic Candidate N-TIMP2 by Unfolded Peptide Extension

通过未折叠肽延伸延长治疗候选药物 N-TIMP2 的循环半衰期

阅读:6
作者:Jason Shirian, Alexandra Hockla, Justyna J Gleba, Matt Coban, Naama Rotenberg, Laura M Strik, Aylin Alasonyalilar Demirer, Matt L Pawlush, John A Copland, Evette S Radisky, Julia M Shifman

Abstract

Matrix metalloproteinases (MMPs) are significant drivers of many diseases, including cancer, and are established targets for drug development. Tissue inhibitors of metalloproteinases (TIMPs) are endogenous MMP inhibitors and are being pursued for the development of anti-MMP therapeutics. TIMPs possess many attractive properties for drug candidates, such as complete MMP inhibition, low toxicity, low immunogenicity, and high tissue permeability. However, a major challenge with TIMPs is their rapid clearance from the bloodstream due to their small size. This study explores a method for extending the plasma half-life of the N-terminal domain of TIMP2 (N-TIMP2) by appending it with a long, intrinsically unfolded tail containing Pro, Ala, and Thr (PATylation). We designed and produced two PATylated N-TIMP2 constructs with tail lengths of 100 and 200 amino acids (N-TIMP2-PAT100 and N-TIMP2-PAT200). Both constructs demonstrated higher apparent molecular weights and retained high inhibitory activity against MMP-9. N-TIMP2-PAT200 significantly increased plasma half-life in mice compared to the non-PATylated variant, enhancing its therapeutic potential. PATylation offers distinct advantages for half-life extension, such as fully genetic encoding, monodispersion, and biodegradability. It can be easily applied to N-TIMP2 variants engineered for high affinity and selectivity toward individual MMPs, creating promising candidates for drug development against MMP-related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。