Plasma Levels of Free NƐ-Carboxymethyllysine (CML) after Different Oral Doses of CML in Rats and after the Intake of Different Breakfasts in Humans: Postprandial Plasma Level of sRAGE in Humans

大鼠口服不同剂量的 CML 后以及人类摄入不同早餐后血浆中游离 NƐ-羧甲基赖氨酸 (CML) 的水平:人类餐后血浆中 sRAGE 的水平

阅读:6
作者:Cynthia Helou, Matheus Thomaz Nogueira Silva Lima, Céline Niquet-Leridon, Philippe Jacolot, Eric Boulanger, Florian Delguste, Axel Guilbaud, Michael Genin, Pauline M Anton, Carine Delayre-Orthez, Tatiana Papazian, Michael Howsam, Frédéric J Tessier

Abstract

N-carboxymethyl-lysine (CML) and other dietary advanced glycation end-products (AGEs) are chemically modified amino acids with potential toxicological effects putatively related to their affinity with the receptor for AGEs (RAGE). The goal of this study was to determine the postprandial kinetics of CML in both rodents and humans and, in the latter, to evaluate their relationship with the soluble RAGE isoforms (sRAGE). Four gavage solutions containing different forms of CML were given to rats, and blood was collected over 8 h. Three different breakfasts containing dietary CML (dCML) were administered to 20 healthy volunteers, and blood was collected over 2 h. Concentrations of CML, CEL, and lysine were quantified in plasma and human meals by LC-MS/MS, and sRAGE was determined in human plasma by ELISA. The results showed that dCML did not affect the concentrations of circulating protein-bound CML and that only free CML increased in plasma, with a postprandial peak at 90 to 120 min. In humans, the postprandial plasmatic sRAGE concentration decreased independently of the dAGE content of the breakfasts. This study confirms reports of the inverse postprandial relationship between plasmatic free CML and sRAGE, though this requires further investigation for causality to be established.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。