Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness

致癌 Nras 对干细胞具有双峰效应,可持续提高竞争力

阅读:6
作者:Qing Li, Natacha Bohin #, Tiffany Wen #, Victor Ng, Jeffrey Magee, Shann-Ching Chen, Kevin Shannon, Sean J Morrison

Abstract

Pre-leukaemic' mutations are thought to promote clonal expansion of haematopoietic stem cells (HSCs) by increasing self-renewal and competitiveness; however, mutations that increase HSC proliferation tend to reduce competitiveness and self-renewal potential, raising the question of how a mutant HSC can sustainably outcompete wild-type HSCs. Activating mutations in NRAS are prevalent in human myeloproliferative neoplasms and leukaemia. Here we show that a single allele of oncogenic Nras(G12D) increases HSC proliferation but also increases reconstituting and self-renewal potential upon serial transplantation in irradiated mice, all prior to leukaemia initiation. Nras(G12D) also confers long-term self-renewal potential to multipotent progenitors. To explore the mechanism by which Nras(G12D) promotes HSC proliferation and self-renewal, we assessed cell-cycle kinetics using H2B-GFP label retention and 5-bromodeoxyuridine (BrdU) incorporation. Nras(G12D) had a bimodal effect on HSCs, increasing the frequency with which some HSCs divide and reducing the frequency with which others divide. This mirrored bimodal effects on reconstituting potential, as rarely dividing Nras(G12D) HSCs outcompeted wild-type HSCs, whereas frequently dividing Nras(G12D) HSCs did not. Nras(G12D) caused these effects by promoting STAT5 signalling, inducing different transcriptional responses in different subsets of HSCs. One signal can therefore increase HSC proliferation, competitiveness and self-renewal through bimodal effects on HSC gene expression, cycling and reconstituting potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。