Abstract
Intraductal papillary mucinous neoplasm (IPMN) is a severe disease with macroscopic visible mucin secretion that primarily occurs in biliary tracts or pancreatic ducts. In comparison with standard diagnostic imaging, probing the molecular abnormalities associated with the initial stages of diseases rather than imaging the end effects markedly improves the accuracy of diagnosis. In the present study, magnetic resonance imaging (MRI) in combination with the contrast agent PEGylated magnetoliposome consisting of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) and target molecules of IPMN were investigated in the diagnosis of patients with suspected IPMN. The present investigation indicated that the novel targeting nanoparticle contrast agent targeted platelet-derived growth factor receptor-β and RET, and maintained a high affinity with tumor markers located on the IPMN surface. The novel targeting nanoparticle contrast agent combined with MRI exhibited increased sensitivity in diagnosing early-stage patients with IPMN. Furthermore, image quality was improved following the use of the novel targeting nanoparticle contrast agent combined with MRI compared with standard MRI. The targeting nanoparticle contrast agent retained sufficient affinity and was present for an adequate amount of time to observe the tumor mass in papillae using MRI. Notably, the targeting nanoparticle contrast agent was metabolized at 12 h post-injection. In conclusion, these outcomes indicate that the novel targeting nanoparticle contrast agent combined with MRI improved image quality and sensitivity compared with standard MRI, which suggests that this approach may be promising for clinical detection in patients with suspected IPMN.
