Local administration of liposomal-based Plekhf1 gene therapy attenuates pulmonary fibrosis by modulating macrophage polarization

局部应用脂质体 Plekhf1 基因疗法通过调节巨噬细胞极化来减轻肺纤维化

阅读:7
作者:Lifeng Yan #, Chenchen Hou #, Juan Liu #, Yi Wang, Chenxi Zeng, Jun Yu, Tianyu Zhou, Qing Zhou, Shengzhong Duan, Weining Xiong

Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Macrophages, particularly alternatively activated macrophages (M2), have been recognized to contribute to the pathogenesis of pulmonary fibrosis. Therefore, targeting macrophages might be a viable therapeutic strategy for IPF. Herein, we report a potential nanomedicine-based gene therapy for IPF by modulating macrophage M2 activation. In this study, we illustrated that the levels of pleckstrin homology and FYVE domain containing 1 (Plekhf1) were increased in the lungs originating from IPF patients and PF mice. Further functionality studies identified the pivotal role of Plekhf1 in macrophage M2 activation. Mechanistically, Plekhf1 was upregulated by IL-4/IL-13 stimulation, after which Plekhf1 enhanced PI3K/Akt signaling to promote the macrophage M2 program and exacerbate pulmonary fibrosis. Therefore, intratracheal administration of Plekhf1 siRNA-loaded liposomes could effectively suppress the expression of Plekhf1 in the lungs and notably protect mice against BLM-induced lung injury and fibrosis, concomitant with a significant reduction in M2 macrophage accumulation in the lungs. In conclusion, Plekhf1 may play a crucial role in the pathogenesis of pulmonary fibrosis, and Plekhf1 siRNA-loaded liposomes might be a promising therapeutic approach against pulmonary fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。