Multimodel preclinical platform predicts clinical response of melanoma to immunotherapy

多模型临床前平台预测黑色素瘤对免疫疗法的临床反应

阅读:1
作者:Eva Pérez-Guijarro ,Howard H Yang ,Romina E Araya ,Rajaa El Meskini ,Helen T Michael ,Suman Kumar Vodnala ,Kerrie L Marie ,Cari Smith ,Sung Chin ,Khiem C Lam ,Andres Thorkelsson ,Anthony J Iacovelli ,Alan Kulaga ,Anyen Fon ,Aleksandra M Michalowski ,Willy Hugo ,Roger S Lo ,Nicholas P Restifo ,Shyam K Sharan ,Terry Van Dyke ,Romina S Goldszmid ,Zoe Weaver Ohler ,Maxwell P Lee ,Chi-Ping Day ,Glenn Merlino

Abstract

Although immunotherapy has revolutionized cancer treatment, only a subset of patients demonstrate durable clinical benefit. Definitive predictive biomarkers and targets to overcome resistance remain unidentified, underscoring the urgency to develop reliable immunocompetent models for mechanistic assessment. Here we characterize a panel of syngeneic mouse models, representing a variety of molecular and phenotypic subtypes of human melanomas and exhibiting their diverse range of responses to immune checkpoint blockade (ICB). Comparative analysis of genomic, transcriptomic and tumor-infiltrating immune cell profiles demonstrated alignment with clinical observations and validated the correlation of T cell dysfunction and exclusion programs with resistance. Notably, genome-wide expression analysis uncovered a melanocytic plasticity signature predictive of patient outcome in response to ICB, suggesting that the multipotency and differentiation status of melanoma can determine ICB benefit. Our comparative preclinical platform recapitulates melanoma clinical behavior and can be employed to identify mechanisms and treatment strategies to improve patient care.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。