Zuo-Gui-Wan Aqueous Extract Ameliorates Glucocorticoid-Induced Spinal Osteoporosis of Rats by Regulating let-7f and Autophagy

左归丸水提物通过调节 let-7f 和自噬改善大鼠糖皮质激素诱导的脊柱骨质疏松症

阅读:4
作者:Gengyang Shen, Qi Shang, Zhida Zhang, Wenhua Zhao, Honglin Chen, Ibrayinjan Mijiti, Guifeng Chen, Xiang Yu, Fuyong Yu, Peng Zhang, Jiahui He, Xuelai Zhang, Jingjing Tang, Jianchao Cui, De Liang, Lingfeng Zeng, Hui Ren, Xiaobing Jiang

Conclusions

ZGW may ameliorate GC-induced spinal osteoporosis by promoting osteoblast differentiation of BMSCs by activation of let-7f and suppression of autophagy.

Methods

In vivo, SD rats were randomly divided into three groups: control group (CON), dexamethasone (DEXM) group, and ZGW group, which were given vehicle, DEXM injection, and ZGW intragastric administration at the same time. Vertebral bone microarchitecture, biomechanics, histomorphology, serum AKP activity, and the autophagosome of osteoblasts were examined. The mRNA expressions of let-7f, autophagy-associated genes (mTORC1, Beclin-1, ATG12, ATG5, and LC3), Runx2, and CTSK were examined. In vitro, the let-7f overexpression/silencing vector was constructed and transfected to evaluate the osteogenic differentiation of BMSCs. Western blot was employed to detect the expression of autophagy-associated proteins (ULK2, ATG5, ATG12, Beclin-1, LC3).

Objective

This study proposes to explore the protective effect of Zuo-Gui-Wan (ZGW) aqueous extract on spinal glucocorticoid-induced osteoporosis (GIOP) in vivo and in vitro, and the underlying mechanisms of ZGW in GIOP and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) were conducted.

Results

In vivo, ZGW promoted the bone quantity, quality, and strength; alleviated histological damage; increased the serum AKP activity; and reduced the autophagosome number in osteoblasts. Moreover, ZGW increased the let-7f, mTORC1, and Runx2 mRNA expressions and reduced the Beclin-1, ATG12, ATG5, LC3, and CTSK mRNA expressions. In vitro, bioinformatics prediction and dual luciferase reporter gene assay verified that let-7f targeted the binding to ULK2 and negatively regulated the ULK2 expression. Furthermore, by let-7f overexpression/silencing, ZGW may promote osteoblast differentiation of BMSCs by regulating let-7f and autophagy as evidenced by Western blot (ULK2, ATG5, ATG12, Beclin-1, LC3). Conclusions: ZGW may ameliorate GC-induced spinal osteoporosis by promoting osteoblast differentiation of BMSCs by activation of let-7f and suppression of autophagy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。