Novel Pseudomonas putida-derived nanoliposomes enhance the inhibition of MCF-7 breast cancer cells by superb intracellular uptake of doxorubicin

新型假单胞菌衍生的纳米脂质体通过极好的阿霉素细胞内摄取增强了对 MCF-7 乳腺癌细胞的抑制

阅读:6
作者:Zahra Asadi, Elham Arkan, Ghazal Nowroozi, Faranak Aghaz

Abstract

In this study, we aimed to utilize phospholipids from the bacterium Pseudomonas putida (PP) as a plentiful, safe, and accessible resource for creating nanoliposomes to deliver doxorubicin (Dox) to MCF-7 breast cancer cells. This bacterium provides a cost-effective source of phospholipids commonly used in nanoliposome production, with no toxicity or adverse environmental impact. To this end, molecular dynamics (MD) simulations were first conducted to evaluate the feasibility of this approach and to analyze the behavior and interaction of Dox with the nanoliposomes. The phospholipids of PP were then extracted using Folch's technique. Subsequently, Dox-loaded PP-derived nanoliposomes (PNL-Dox) were developed using the thin-film method. The physicochemical properties of the fabricated nanocarrier were then investigated and the anticancer effects of this system were tested on MCF-7 cells. The results of the MD simulations indicated that Dox reacted with all of the phospholipids through hydrogen bonds without affecting the fluidity, stability, and thickness of the nanoliposome membrane. Additionally, a small number of Dox molecules interacted with the nanocarrier membrane, while the remaining were located in its interior. The physicochemical investigation results showed that PNL-Dox had an average particle size and zeta potential of 271.7 ± 7.1 nm and -8.8 ± 3.3 mV, respectively. Scanning electron microscopy revealed that the particles were spherical and did not show any signs of aggregation. Drug release of PNL-Dox was gradual at pH 7.4 and 6.5, with a significantly higher release at pH 6.5. In vitro studies demonstrated successful uptake of PNL-Dox by MCF-7 cells, resulting in cytotoxicity within 24 and 48 h of treatment. Also, it increased apoptosis and reduced the production of reactive oxygen species (ROS) in these cells. Our study showcased the potential of PP phospholipids to form a promising anti-cancer drug delivery system, opening up new possibilities for the treatment of all types of cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。