In Situ Activation of the Receptor Aggregation for Cell Apoptosis by an AI-Au Intelligent Nanomachine via Tumor Extracellular Acidity

AI-Au智能纳米机器通过肿瘤细胞外酸性原位激活受体聚集导致细胞凋亡

阅读:6
作者:Yue Zhang, Feng Cheng, Rui Liang, Xin Jia Shuai, Kun Han Nie, Jing Li, Qiao Ling Zeng, Cheng Zhi Huang, Chun Mei Li

Abstract

Polyvalent ligand-induced cell receptor aggregation is closely related to cell behavior regulation. At present, most of the means to induce receptor aggregation rely on external stimuli such as light, heat, and magnetic fields, which may cause side effects to normal cells. How to achieve receptor aggregation on the cancer cell surface to achieve cell apoptosis selectively is still a challenge. Therefore, by taking advantage of the unique property of cancer cells' slightly acidic microenvironment, an easy-to-use apoptosis-inducing mode for the in situ activation of cell surface nucleolin clustering has been developed, which not only opened a new channel for nucleolin receptor aggregation to regulate cell function and further development but also avoided damage to normal cells, providing a new strategy for tumor treatment. Dual functional ssDNA (AS1411 aptamer and pH-responsive I-strand sequence) was modified on the surface of gold nanoparticles (AuNPs) to fabricate AI-Au intelligent nanomachines. Then, the specific binding on cancer cells and aggregation of the nucleolin receptors can be achieved via the formation of an i-Motif structure among adjacent AuNPs under the acidic microenvironment. The result showed that AI-Au nanomachines mediated nucleolin cross-linking on the cell surface, resulting in a cytotoxic effect of approximately 60%. Experiments such as calcein-AM/PI staining, nuclear dye staining, and flow cytometry demonstrated that cell apoptosis became more evident with the increase of acidity under the cell surface microenvironment. Immunofluorescence imaging further confirmed the Cyt-c/caspase-3 apoptosis pathway induced by AI-Au nanomachines. The proposed strategy used for specific cancer cell apoptosis by the in situ activation of tumor cell membrane receptor aggregation is inexpensive and simple to use, which not only provides a new means of nucleolin receptor aggregation for regulating cell function but also offers a new strategy for tumor treatment with reduced side effect to normal cells. This work is significant for comprehending the ligand-induced receptor aggregation process and can lead to the development of a promising anticancer drug.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。