Biosynthetic gold nanoparticles of Hibiscus syriacus L. callus potentiates anti-inflammation efficacy via an autophagy-dependent mechanism

木槿愈伤组织的生物合成金纳米粒子通过自噬依赖机制增强抗炎功效

阅读:7
作者:Xing Yue Xu, Thi Hoa My Tran, Haribalan Perumalsamy, Dhandapani Sanjeevram, Yeon-Ju Kim

Abstract

Biological applications of gold nanoparticles (AuNps) have potentially explored an efficient agent attributed to their biocompatibility and high efficiency in drug delivery. Our study applied an extract of Hibiscus syriacus L. callus (HCE) with a pioneer implementation on the induction of mass production. Bioactive compounds present in HCE were identified by Gas chromatography-mass spectrometry (GC-MS) and Liquid chromatography MS (LC-MS), wherein, the Denatonium was exclusively identifiable in HCE. Next, AuNps were synthesized and optimized using HCE (HCE-AuNps), and the comparison was conducted to evaluate the anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated macrophages. As per result, HCE-AuNps was reported to show a prominent reduction of pro-inflammatory cytokines and renovate the mitochondrial function through restoring the mitochondrial membrane potential changes, decreasing reactive oxygen species (ROS) accumulation, and recovering ATP contents, respectively. Furthermore, the immunoblotting of LC3b/a accumulation, and p62 rapid degradation revealed that HCE-AuNps could induce the autophagy as an intracellular response to reinforce alleviation of pro-inflammatory cytokines and mitochondria dysfunction. Besides, 740 Y-P (PI3K agonist) was used to verify that inhibiting autophagy could partially reverse HCE-AuNps suppressed mitochondrial dysfunction, and thus exacerbated inflammation, supporting a causal role for autophagy in the anti-inflammatory effect of HCE-AuNps. Taken together, we strongly anticipate that HCE-AuNps would act as a potential autophagy inducer for LPS-triggered macrophage's inflammation, providing a novel insight for biosynthetic nanoparticles in the treatment of mitochondria dysfunction and inflammation related diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。