Development of a new HPLC method for simultaneous determination of clopidogrel and its major metabolite using a chemometric approach

开发一种新的高效液相色谱法同时测定氯吡格雷及其主要代谢物

阅读:6
作者:V Anuta, I Sarbu, I Mircioiu, B S Velescu

Abstract

This paper presents the development and validation of a new HPLC-UV method for simultaneous quantitative determination of clopidogrel and its hydrolysis product clopidogrel carboxylic acid (CCA) from bulk material and dosage formulations. Development of the chromatographic method is based on a design of experiments (DOE) approach. A Box-Behnken experimental design was used to build the mathematical models and to choose the significant parameters for the optimization by simultaneously taking resolution, capacity factor and peak symmetry as responses. Derringer's desirability function was used for the selection of the optimum experimental conditions in terms of mobile phase composition, column temperature and flow rate. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision, robustness and system suitability. The method was further employed for the study of clopidogrel bisulfate hydrolysis kinetics under different pH conditions, with special emphasis on the acidic hydrolysis studies, since different clopidogrel salts are suffering pre-systemic metabolism trough hydrolysis under the acidic pH of the stomach. This effect is generally difficult to quantify, since CCA is also the main circulating metabolite, and no differentiation between the pre-systemic and systemic CCA can be made. In the acidic environment created by a 0.1N HCl solution CLO degradation was slow at room or body temperature (25 and 37°C respectively), less than 5% of the initial CLO amount being hydrolyzed after 48h. Under forced conditions (85ºC) however, 17.8% of CLO was transformed into CCA within 48 hours.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。