Serodolin, a β-arrestin-biased ligand of 5-HT7 receptor, attenuates pain-related behaviors

Serodolin 是一种 5-HT7 受体的 β-arrestin 偏向配体,可减轻疼痛相关行为

阅读:6
作者:Chayma El Khamlichi, Flora Reverchon, Nadège Hervouet-Coste, Elodie Robin, Nicolas Chopin, Emmanuel Deau, Fahima Madouri, Cyril Guimpied, Cyril Colas, Arnaud Menuet, Asuka Inoue, Andrzej J Bojarski, Gérald Guillaumet, Franck Suzenet, Eric Reiter, Séverine Morisset-Lopez

Abstract

G protein–coupled receptors (GPCRs) are involved in regulation of manifold physiological processes through coupling to heterotrimeric G proteins upon ligand stimulation. Classical therapeutically active drugs simultaneously initiate several downstream signaling pathways, whereas biased ligands, which stabilize subsets of receptor conformations, elicit more selective signaling. This concept of functional selectivity of a ligand has emerged as an interesting property for the development of new therapeutic molecules. Biased ligands are expected to have superior efficacy and/or reduced side effects by regulating biological functions of GPCRs in a more precise way. In the last decade, 5-HT7 receptor (5-HT7R) has become a promising target for the treatment of neuropsychiatric disorders, sleep and circadian rhythm disorders, and pathological pain. In this study, we showed that Serodolin is unique among a number of agonists and antagonists tested: it behaves as an antagonist/inverse agonist on Gs signaling while inducing ERK activation through a β-arrestin–dependent signaling mechanism that requires c-SRC activation. Moreover, we showed that Serodolin clearly decreases hyperalgesia and pain sensation in response to inflammatory, thermal, and mechanical stimulation. This antinociceptive effect could not be observed in 5-HT7R knockout (KO) mice and was fully blocked by administration of SB269-970, a specific 5-HT7R antagonist, demonstrating the specificity of action of Serodolin. Physiological effects of 5-HT7R stimulation have been classically shown to result from Gs-dependent adenylyl cyclase activation. In this study, using a β-arrestin–biased agonist, we provided insight into the molecular mechanism triggered by 5-HT7R and revealed its therapeutic potential in the modulation of pain response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。