Preparations of Polyurethane Foam Composite (PUFC) Pads Containing Micro-/Nano-Crystalline Cellulose (MCC/NCC) toward the Chemical Mechanical Polishing Process

含微/纳米晶纤维素 (MCC/NCC) 的聚氨酯泡沫复合 (PUFC) 垫的制备,适用于化学机械抛光工艺

阅读:15
作者:Yi-Shen Huang, Yu-Wen Huang, Qiao-Wen Luo, Chao-Hsing Lin, Penjit Srinophakun, Supanicha Alapol, Kun-Yi Andrew Lin, Chih-Feng Huang

Abstract

Polyurethane foam (PUF) pads are widely used in semiconductor manufacturing, particularly for chemical mechanical polishing (CMP). This study prepares PUF composites with microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC) to improve CMP performance. MCC and NCC were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), showing average diameters of 129.7 ± 30.9 nm for MCC and 22.2 ± 6.7 nm for NCC, both with high crystallinity (ca. 89%). Prior to preparing composites, the study on the influence of the postbaked step on the PUF was monitored through Fourier-transform infrared spectroscopy (FTIR). After that, PUF was incorporated with MCC/NCC to afford two catalogs of polyurethane foam composites (i.e., PUFC-M and PUFC-N). These PUFCs were examined for their thermal and surface properties using a differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), dynamic mechanical analyzer (DMA), and water contact angle (WCA) measurements. Tgs showed only slight changes but a notable increase in the 10% weight loss temperature (Td10%) for PUFCs, rising from 277 °C for PUF to about 298 °C for PUFCs. The value of Tan δ dropped by up to 11%, indicating improved elasticity. Afterward, tensile and abrasion tests were conducted, and we acquired significant enhancements in the abrasion performance (e.g., from 1.04 mm/h for the PUF to 0.76 mm/h for a PUFC-N) of the PUFCs. Eventually, we prepared high-performance PUFCs and demonstrated their capability toward the practical CMP process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。