Definition of Synovial Mesenchymal Stem Cells for Meniscus Regeneration by the Mechanism of Action and General Amp1200 Gene Expression

通过作用机制和一般 Amp1200 基因表达定义用于半月板再生的滑膜间充质干细胞

阅读:4
作者:Kentaro Nakamura, Tsukasa Kitahashi, Ryo Kogawa, Yuichi Yoshino, Izumi Ogura

Abstract

The quality control (QC) of pharmaceutical-grade cell-therapy products, such as mesenchymal stem cells (MSCs), is challenging. Attempts to develop such products have been hampered by difficulties defining cell-type-specific characteristics and therapeutic mechanisms of action (MoAs). Although we have developed a cell therapy product, FF-31501, consisting of human synovial MSCs (SyMSCs), it was difficult to find specific markers for SyMSCs and to define the cells separately from other MSCs. The purpose of this study was to create a method for identifying and defining SyMSCs from other tissue-derived MSCs and to delve deeper into the mechanism of action of SyMSC-induced meniscus regeneration. Specifically, as a cell-type-dependent approach, we constructed a set of 1143 genes (Amp1200) reported to be associated with MSCs and established a method to evaluate them by correlating gene expression patterns. As a result, it was possible to define SyMSCs separately from other tissue-derived MSCs and non-MSCs. In addition, the gene expression analysis also highlighted TNSF-15. The in vivo rat model of meniscus injury found TNSF-15 to be an essential molecule for meniscus regeneration via SyMSC administration. This molecule and previously reported MoA molecules allowed an MoA-dependent approach to define the mechanism of action for SyMSCs. Therefore, SyMSCs for meniscus regeneration were defined by means of two approaches: the method to separate them from other MSCs and the identification of the MoA molecules. These approaches would be useful for the QC of cell therapy products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。