Changed gene expression in subjects with schizophrenia and low cortical muscarinic M1 receptors predicts disrupted upstream pathways interacting with that receptor

患有精神分裂症和皮质毒蕈碱型 M1 受体较低的受试者的基因表达发生变化,预示着与该受体相互作用的上游通路中断

阅读:5
作者:E Scarr, M Udawela, E A Thomas, B Dean

Abstract

We tested the hypothesis that, compared with subjects with no history of psychiatric illness (controls), changes in gene expression in the dorsolateral prefrontal cortex from two subgroups of subjects with schizophrenia, one with a marked deficit in muscarinic M1 receptors (muscarinic receptor-deficit schizophrenia (MRDS)), would identify different biochemical pathways that would be affected by their aetiologies. Hence, we measured levels of cortical (Brodmann area 9) mRNA in 15 MRDS subjects, 15 subjects with schizophrenia but without a deficit in muscarinic M1 receptors (non-MRDS) and 15 controls using Affymetrix Exon 1.0 ST arrays. Levels of mRNA for 65 genes were significantly different in the cortex of subjects with MRDS and predicted changes in pathways involved in cellular movement and cell-to-cell signalling. Levels of mRNA for 45 genes were significantly different in non-MRDS and predicted changes in pathways involved in cellular growth and proliferation as well as cellular function and maintenance. Changes in gene expression also predicted effects on pathways involved in amino acid metabolism, molecular transport and small-molecule biochemistry in both MRDS and non-MRDS. Overall, our data argue a prominent role for glial function in MRDS and neurodevelopment in non-MRDS. Finally, the interactions of gene with altered levels of mRNA in the cortex of subjects with MRDS suggest many of their affects will be upstream of the muscarinic M1 receptor. Our study gives new insight into the molecular pathways affected in the cortex of subjects with MRDS and supports the notion that studying subgroups within the syndrome of schizophrenia is worthwhile.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。