A novel variant in GPAA1, encoding a GPI transamidase complex protein, causes inherited vascular anomalies with various phenotypes

GPAA1 中的一种新变体编码 GPI 转酰胺酶复合蛋白,可导致具有各种表型的遗传性血管异常

阅读:4
作者:Yongyun Li, Liu Yang, Jie Yang, Jiahao Shi, Peiwei Chai, Shengfang Ge, Yefei Wang, Xianqun Fan, Renbing Jia

Abstract

Vascular anomalies (VAs), comprising wide subtypes of tumors and malformations, are often caused by variants in multiple tyrosine kinase (TK) receptor signaling pathways including TIE2, PIK3CA and GNAQ/11. Yet, a portion of individuals with clinical features of VA do not have variants in these genes, suggesting that there are undiscovered pathogenic factors underlying these patients and possibly with overlapping phenotypes. Here, we identified one rare non-synonymous variant (c.968A > G) in the seventh exon of GPAA1 (Glycosylphosphatidylinositol Anchor Attachment Protein 1), shared by the four affected members of a large pedigree with multiple types of VA using whole-exome sequencing. GPAA1 encodes a glycosylphosphatidylinositol (GPI) transamidase complex protein. This complex orchestrates the attachment of the GPI anchor to the C terminus of precursor proteins in the endoplasmic reticulum (ER). We showed such variant led to scarce expression of GPAA1 protein in vascular endothelium and induced a localization change from ER membrane to cytoplasm and nucleus. In addition, expressing wild-type GPAA1 in endothelial cells had an effect to inhibit cell proliferation and migration, while expressing variant GPAA1 led to overgrowth and overmigration, indicating a loss of the quiescent status. Finally, a gpaa1-deficient zebrafish model displayed several types of developmental defects as well as vascular dysplasia, demonstrating that GPAA1 is involved in angiogenesis and vascular remodeling. Altogether, our results indicate that the rare coding variant in GPAA1 (c.968A > G) is causally related to familial forms of VAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。