BMP4 Upregulation Is Associated with Acquired Drug Resistance and Fatty Acid Metabolism in EGFR-Mutant Non-Small-Cell Lung Cancer Cells

BMP4 上调与 EGFR 突变型非小细胞肺癌细胞中的获得性耐药性和脂肪酸代谢有关

阅读:4
作者:Duc-Hiep Bach, Thi-Thu-Trang Luu, Donghwa Kim, Yong Jin An, Sunghyouk Park, Hyen Joo Park, Sang Kook Lee

Abstract

Lung cancer is the leading cause of cancer-associated deaths worldwide. In particular, non-small-cell lung cancer (NSCLC) cells harboring epidermal growth factor receptor (EGFR) mutations are associated with resistance development of EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment. Recent findings suggest that bone morphogenetic proteins (BMPs) and microRNAs (miRNAs) might act as oncogenes or tumor suppressors in the tumor microenvironment. In this study, for the first time, we identified the potential roles of BMPs and miRNAs involved in EGFR-TKI resistance by analyzing datasets from a pair of parental cells and NSCLC cells with acquired EGFR-TKI resistance. BMP4 was observed to be significantly overexpressed in the EGFR-TKI-resistant cells, and its mechanism of action was strongly associated with the induction of cancer cell energy metabolism through the modulation of Acyl-CoA synthetase long-chain family member 4. In addition, miR-139-5p was observed to be significantly downregulated in the resistant NSCLC cells. The combination of miR-139-5p and yuanhuadine, a naturally derived antitumor agent, synergistically suppressed BMP4 expression in the resistant cells. We further confirmed that LDN-193189, a small molecule BMP receptor 1 inhibitor, effectively inhibited tumor growth in a xenograft nude mouse model implanted with the EFGR-TKI-resistant cells. These findings suggest a novel role of BMP4-mediated tumorigenesis in the progression of acquired drug resistance in EGFR-mutant NSCLC cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。