GITR Agonism Enhances Cellular Metabolism to Support CD8+ T-cell Proliferation and Effector Cytokine Production in a Mouse Tumor Model

GITR 激动剂可增强细胞代谢,以支持小鼠肿瘤模型中的 CD8+ T 细胞增殖和效应细胞因子产生

阅读:8
作者:Simran S Sabharwal, David B Rosen, Jeff Grein, Dana Tedesco, Barbara Joyce-Shaikh, Roanna Ueda, Marie Semana, Michele Bauer, Kathy Bang, Christopher Stevenson, Daniel J Cua, Luis A Zúñiga

Abstract

GITR is a costimulatory receptor currently undergoing phase I clinical trials. Efficacy of anti-GITR therapy in syngeneic mouse models requires regulatory T-cell depletion and CD8+ T-cell costimulation. It is increasingly appreciated that immune cell proliferation and function are dependent on cellular metabolism. Enhancement of diverse metabolic pathways leads to different immune cell fates. Little is known about the metabolic effects of GITR agonism; thus, we investigated whether costimulation via GITR altered CD8+ T-cell metabolism. We found activated, GITR-treated CD8+ T cells upregulated nutrient uptake, lipid stores, glycolysis, and oxygen consumption rate (OCR) in vitro Using MEK, PI3Kδ, and metabolic inhibitors, we show increased metabolism is required, but not sufficient, for GITR antibody (DTA-1)-induced cellular proliferation and IFNγ production. In an in vitro model of PD-L1-induced CD8+ T-cell suppression, GITR agonism alone rescued cellular metabolism and proliferation, but not IFNγ production; however, DTA-1 in combination with anti-PD-1 treatment increased IFNγ production. In the MC38 mouse tumor model, GITR agonism significantly increased OCR and IFNγ and granzyme gene expression in both tumor and draining lymph node (DLN) CD8+ T cells ex vivo, as well as basal glycolysis in DLN and spare glycolytic capacity in tumor CD8+ T cells. DLN in GITR-treated mice showed significant upregulation of proliferative gene expression compared with controls. These data show that GITR agonism increases metabolism to support CD8+ T-cell proliferation and effector function in vivo, and that understanding the mechanism of action of agonistic GITR antibodies is crucial to devising effective combination therapies. Cancer Immunol Res; 6(10); 1199-211. ©2018 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。