A Study on the Potential of Valorizing Sargassum latifolium into Biofuels and Sustainable Value-Added Products

将宽叶马尾藻转化为生物燃料和可持续增值产品的潜力研究

阅读:7
作者:Nour Sh El-Gendy, Mohamed Hosny, Abdallah R Ismail, Ahmad A Radwan, Basma A Ali, Hager R Ali, Radwa A El-Salamony, Khaled M Abdelsalam, Manal Mubarak

Abstract

To increase the limited commercial utility and lessen the negative environmental effects of the massive growth of brown macroalgae, this work illustrates the feasibility of valorizing the invasively proliferated Sargassum latifolium into different value-added products. The proximate analysis recommends its applicability as a solid biofuel with a sufficient calorific value (14.82 ± 0.5 MJ/kg). It contains 6.00 ± 0.07% N + P2O5 + K2O and 29.61 ± 0.05% organic C. Its nutritional analysis proved notable carbohydrate, ash, protein, and fiber contents with a rational amount of lipid and a considerable amount of beneficial macronutrients and micronutrients, with a low concentration of undesirable heavy metals. That recommends its application in the organic fertilizer, food, medicine, and animal fodder industries. A proposed eco-friendly sequential integrated process valorized its biomass into 77.6 ± 0.5 mg/g chlorophyll, 180 ± 0.5 mg/g carotenoids, 5.86 ± 0.5 mg/g fucoxanthin, 0.93 ± 0.5 mg/g β-carotene, 21.97 ± 0.5% (w/w) alginate, and 16.40 ± 0.5% (w/w) cellulose, with different industrial and bioprocess applications. Furthermore, Aspergillus galapagensis SBWF1, Mucor hiemalis SBWF2, and Penicillium oxalicum SBWF3 (GenBank accession numbers OR636487, OR636488, and OR636489) have been isolated from its fresh biomass. Those showed wide versatility for hydrolyzing and saccharifying its polysaccharides. A Gram-negative Stutzerimonas stutzeri SBB1(GenBank accession number OR764547) has also been isolated with good capabilities to ferment the produced pentoses, hexoses, and mannitol from the fungal saccharification, yielding 0.25 ± 0.014, 0.26 ± 0.018, and 0.37 ± 0.020 g ethanol/g algal biomass, respectively. Furthermore, in a pioneering step for valuing the suggested sequential biomass hydrolysis and bioethanol fermentation processes, the spent waste S. latifolium disposed of from the saccharification process has been valorized into C-dots with potent biocidal activity against pathogenic microorganisms.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。