A Small Molecule Selected from a DNA-Encoded Library of Natural Products That Binds to TNF-α and Attenuates Inflammation In Vivo

从 DNA 编码的天然产物库中筛选出的一种小分子,可与 TNF-α 结合并减轻体内炎症

阅读:8
作者:Shuyue Wang, Xiaojie Shi, Jie Li, Qianping Huang, Qun Ji, Ying Yao, Tao Wang, Lili Liu, Min Ye, Yun Deng, Peixiang Ma, Hongtao Xu, Guang Yang

Abstract

Tumor necrosis factor α (TNF-α) inhibitors have shown great success in the treatment of autoimmune diseases. However, to date, approved drugs targeting TNF-α are restricted to biological macromolecules, largely due to the difficulties in using small molecules for pharmaceutical intervention of protein-protein interactions. Herein the power of a natural product-enriched DNA-encoded library (nDEL) is exploited to identify small molecules that interfere with the protein-protein interaction between TNF-α and the cognate receptor. Initially, to select molecules capable of binding to TNF-α , "late-stage" DNA modification method is applied to construct an nDEL library consisted of 400 sterically diverse natural products and pharmaceutically active chemicals. Several natural products, including kaempferol, identified not only show direct interaction with TNF-α, but also lead to the blockage of TNF-α/TNFR1 interaction. Significantly, kaempferol attenuates the TNF-α signaling in cells and reduces the 12-O-tetradecanoylphorbol-13-acetateinduced ear inflammation in mice. Structure-activity-relationship analyses demonstrate the importance of substitution groups at C-3, C-7, and C-4' of kaempferol. The nDEL hit, kaempferol, represents a novel chemical scaffold capable of specifically recognizing TNF-α and blocking its signal transduction, a promising starting point for the development of a small molecule TNF-α inhibitor for use in the clinical setting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。