Competitive Adsorption of Phenolic Acids, Secoiridoids, and Flavonoids in Quercetin Molecularly Imprinted Polymers and Application for Fractionation of Olive Leaf Extracts

槲皮素分子印迹聚合物中酚酸、裂环烯醚萜和黄酮类化合物的竞争吸附及其在橄榄叶提取物分馏中的应用

阅读:6
作者:Ayssata Almeida, Cláudia Martins, Rolando C S Dias, Mário Rui P F N Costa

Abstract

The competitive adsorption of phenolic acids, secoiridoids, and flavonoids in a molecularly imprinted polymer (MIP) functionalized with 4-vinylpiridine (4VP) moieties is analyzed here considering vanillic acid, oleuropein, and quercetin as reference molecules. Measured adsorption isotherms highlight a much stronger binding capacity of the quercetin-MIP particles toward quercetin as compared with vanillic acid and oleuropein. The acquired data were used to design and scale-up sorption/desorption processes aiming at the fractionation of olive leaf extracts. We show that a simple adsorption process, avoiding many pre-preparation steps, is possible when working at a high extract concentration due to the strong binding capacity of the MIP for flavonoids, even when using aqueous mixtures with a large alcoholic content. Solvent-gradient/temperature-swing desorption led to a sequence of fractions with enrichment of non-flavonoids at low alcoholic content while glycosylated flavonoids were enriched in fractions with 40% < alcohol content < 80%. Enrichment factors of 13 and 12 were measured for luteolin-7-O-glucoside and apigenin-7-O-glucoside, respectively. Flavonoid aglycones were enriched in fractions with alcohol content >80% (enrichment factors >20 for luteolin and quercetin). The findings reported here demonstrate the usefulness of the developed materials and sorption/desorption conditions for agricultural residue valorization and circular bioeconomy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。