Liposomal Silybin Improves Glucose and Lipid Metabolisms in Type 2 Diabetes Mellitus Complicated with Non-Alcoholic Fatty Liver Disease via AMPK/TGF-β1/Smad Signaling

脂质体水飞蓟宾通过 AMPK/TGF-β1/Smad 信号传导改善 2 型糖尿病合并非酒精性脂肪肝患者的葡萄糖和脂质代谢

阅读:8
作者:Jialuo Cai, Yilin Zhu, Xiaoping Li, Guiming Deng, Yuanshan Han, Feiyun Yuan, Gangqiang Yi, Xinhua Xia

Abstract

Improving hepatic glucose and lipid metabolisms is an important strategy to treat type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease (T2DM-NAFLD). Silybin (SLB) has the potential hepatoprotection, while its oral bioavailability is poor. This study aims to investigate the functional role and mechanism of liposomal SLB in modulating glucose/lipid metabolism in T2DM-NAFLD. SLB was prepared by thin film dispersion method and characterized using dynamic light scattering, scanning electron microscope, high performance liquid chromatography and zeta potential analyzer. A rat model of T2DM-NAFLD was used to determine the role of liposomal SLB in regulating glycolipid metabolism and hepatic damage. Rat primary hepatocytes were used to demonstrate the hepatoprotection mechanism of liposomal SLB. The encapsulation efficiency was more than 80%, which showed the average particle size of 119.76 nm. Also, the average Zeta potential was -4.76 mV. These liposomes were spherical. In rats with T2DM-NAFLD, liposomal SLB alleviated insulin resistance and lipid metabolism, thereby improving hepatic lipid accumulation, inflammation and fibrosis. Besides, liposomal SLB elevated AMPK phosphorylation, and decreased collagen I/III, α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) and the phosphorylation of Smad2/3. In hepatocyte model, compound C partially reversed the effects of liposomal SLB on cell viability, glycolipid metabolism and AMPK/TGF-β1/Smad pathway activation. Liposomal SLB ameliorates hepatic glucose and lipid metabolisms in T2DM-NAFLD via activating AMPK/TGF-β1/Smad pathway, providing an efficient strategy for treating T2DM-NAFLD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。