6-methoxydihydroavicine, the alkaloid extracted from Macleaya cordata (Willd.) R. Br. (Papaveraceae), triggers RIPK1/Caspase-dependent cell death in pancreatic cancer cells through the disruption of oxaloacetic acid metabolism and accumulation of reactive oxygen species

6-甲氧基二氢鸟氨酸是从博落回 (Willd.) R. Br. (罂粟科) 中提取的生物碱,通过破坏草酰乙酸代谢和活性氧积累,引发胰腺癌细胞中 RIPK1/Caspase 依赖性细胞死亡

阅读:4
作者:Nengfang Ma, Fugen Shangguan, Hongfei Zhou, Huimin Huang, Jun Lei, Jing An, Guihua Jin, Weiwei Zhuang, Shipeng Zhou, Shijia Wu, Hongping Xia, Hailong Yang, Linhua Lan

Background

Many extracts and purified alkaloids of M. cordata (Papaveraceae family) have been reported to display promising anti-tumor effects by inhibiting cancer cell growth and inducing apoptosis in many cancer types. However, no evidence currently exists for anti-pancreatic cancer activity of alkaloids extracted from M. cordata, including a novel alkaloid named 6‑methoxy dihydrosphingosine (6-Methoxydihydroavicine, 6-ME) derived from M. cordata fruits.

Conclusion

6-ME exhibited specific anti-tumor effects through interrupting OAA metabolic homeostasis to trigger ROS/RIPK1-dependent cell death and mitochondrial dysfunction, suggesting that 6-ME could be considered as a highly promising compound for PC intervention.

Methods

CCK-8, RTCA, and colony-formation assays were used to analyze PC cell growth. Cell death ratios, changes in MMP and ROS levels were measured by flow cytometry within corresponding detection kits. A Seahorse XFe96 was employed to examine the effects of 6-ME on cellular bioenergetics. Western blot and q-RT-PCR were conducted to detect changes in target molecules.

Purpose

The aim of this study was to investigate the anti-tumor effects of 6-ME on PC cells and the underlying mechanism.

Results

6-ME effectively reduced the growth of PC cells and promoted PCD by activating RIPK1, caspases, and GSDME. Specifically, 6-ME treatment caused a disruption of OAA metabolism and increased ROS production, thereby affecting mitochondrial homeostasis and reducing aerobic glycolysis. These responses resulted in mitophagy and RIPK1-mediated cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。