Anti-inflammatory effect of Yu-Ping-Feng-San via TGF-β1 signaling suppression in rat model of COPD

玉屏风散通过抑制TGF-β1信号传导对COPD大鼠模型产生抗炎作用

阅读:5
作者:Zhong-Shan Yang, Jin-Yuan Yan, Ni-Ping Han, Wei Zhou, Yu Cheng, Xiao-Mei Zhang, Ning Li, Jia-Li Yuan

Conclusion

YPFS accomplished anti-inflammatory effects mainly by suppressing phosphorylation of Smad2, TGF-β1/Smad2 signaling pathway was required for YPFS-mediated anti-inflammation in COPD rats or CSE-treated Beas-2B cells.

Methods

The COPD rat model was established by exposure to cigarette smoke and intratracheal instillation of lipopolysaccharide, YPFS was administered to the animals. The efficacy of YPFS was evaluated by comparing the severity of pulmonary pathological damage, pro-inflammation cytokines, collagen related genes and the activation of TGF-β1/Smad2 signaling pathway. Furthermore, CSE-treated cells were employed to confirm whether the effect of YPFS was dependent on the TGF-β1/Smad2 signaling via knockdown Smad2 (Si-RNA), or pretreatment with the inhibitor of TGF-β1.

Results

Administration of YPFS effectively alleviated injury of lung, suppressed releasing of pro-inflammatory cytokines and collagen deposition in COPD animals (P<0.05), whereas exogenous TGF-β1 promoted releasing of IL-1β, IL-6, TNFα (P<0.05). Administration YPFS reduced inflammatory response significantly, also down-regulated TGF-β1/Smad2 signaling in vivo and in vitro. Unexpectedly, knockdown Smad2 or inhibition of TGF-β1 abolished anti-inflammatory effect of YPFS in CSE-treated cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。