Metabolic reprogramming of acute lymphoblastic leukemia cells in response to glucocorticoid treatment

糖皮质激素治疗后急性淋巴细胞白血病细胞的代谢重编程

阅读:14
作者:Matheus Dyczynski, Mattias Vesterlund, Ann-Charlotte Björklund, Vasilios Zachariadis, Jerry Janssen, Hector Gallart-Ayala, Evangelia Daskalaki, Craig E Wheelock, Janne Lehtiö, Dan Grandér, Katja Pokrovskaja Tamm, Roland Nilsson

Abstract

Glucocorticoids (GCs) are metabolic hormones with immunosuppressive effects that have proven effective drugs against childhood acute lymphoblastic leukemia (ALL). Yet, the role of metabolic reprogramming in GC-induced ALL cell death is poorly understood. GCs efficiently block glucose uptake and metabolism in ALL cells, but this does not fully explain the observed induction of autophagy and cell death. Here, we have performed parallel time-course proteomics, metabolomics, and isotope-tracing studies to examine in detail the metabolic effects of GCs on ALL cells. We observed metabolic events associated with growth arrest, autophagy, and catabolism prior to onset of apoptosis: nucleotide de novo synthesis was reduced, while certain nucleobases accumulated; polyamine synthesis was inhibited; and phosphatidylcholine synthesis was induced. GCs suppressed not only glycolysis but also entry of both glucose and glutamine into the TCA cycle. In contrast, expression of glutamine-ammonia ligase (GLUL) and cellular glutamine content was robustly increased by GC treatment, suggesting induction of glutamine synthesis, similar to nutrient-starved muscle. Modulating medium glutamine and dimethyl-α-ketoglutarate (dm-αkg) to favor glutamine synthesis reduced autophagosome content of ALL cells, and dm-αkg also rescued cell viability. These data suggest that glutamine synthesis affects autophagy and possibly onset of cell death in response to GCs, which should be further explored to understand mechanism of action and possible sources of resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。