Janus kinase 1/3 signaling pathways are key initiators of TH2 differentiation and lung allergic responses

Janus 激酶 1/3 信号通路是 TH2 分化和肺过敏反应的关键启动因子

阅读:10
作者:Shigeru Ashino, Katsuyuki Takeda, Hui Li, Vanessa Taylor, Anthony Joetham, Polly R Pine, Erwin W Gelfand

Background

Janus kinases (JAKs) are regulators of signaling through cytokine receptors. The importance of JAK1/3 signaling on TH2 differentiation and development of lung allergic responses has not been investigated.

Conclusions

Targeting the TH2-dependent JAK/STAT activation pathway represents a novel therapeutic approach for the treatment of asthma.

Methods

A selective JAK1/3 inhibitor was used to assay the importance of this pathway on induction of TH1, TH2, and TH17 differentiation in vitro. In vivo, the effects of inhibiting JAK1/3 signaling were examined by administering the inhibitor during the sensitization or allergen challenge phases in the primary challenge model or just before provocative challenge in the secondary challenge model. Airway inflammation and AHR were examined after the last airway challenge.

Objective

We sought to examine a selective JAK1/3 inhibitor (R256) on differentiation of TH subsets in vitro and on development of ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) and inflammation in an experimental model of asthma.

Results

In vitro, R256 inhibited differentiation of TH2 but not TH1 or TH17 cells, which was associated with downregulation of signal transducer and activator of transcription (STAT) 6 and STAT5 phosphorylation. However, once polarized, TH2 cells were unaffected by the inhibitor. In vivo, R256 administered during the OVA sensitization phase prevented the development of AHR, airway eosinophilia, mucus hypersecretion, and TH2 cytokine production without changes in TH1 and TH17 cytokine levels, indicating that selective blockade of TH2 differentiation was critical. Inhibitor administration after OVA sensitization but during the challenge phases in the primary or secondary challenge models similarly suppressed AHR, airway eosinophilia, and mucus hypersecretion without any reduction in TH2 cytokine production, suggesting the inhibitory effects were downstream of TH2 cytokine receptor signaling pathways. Conclusions: Targeting the TH2-dependent JAK/STAT activation pathway represents a novel therapeutic approach for the treatment of asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。