MiR-137 promotes TLR4/NF-κB pathway activity through targeting KDM4A, inhibits osteogenic differentiation of human bone marrow mesenchymal stem cells and aggravates osteoporosis

MiR-137通过靶向KDM4A促进TLR4/NF-κB通路活性抑制人骨髓间充质干细胞成骨分化加重骨质疏松

阅读:4
作者:Ying-Feng Yu, Pei-Quan Yao, Zhi-Kun Wang, Wen-Wei Xie

Conclusion

MiR-137 enhances the activity of the TLR4/NF-κB pathway by targeting KDM4A, thereby inhibiting the osteogenic differentiation of hBMSCs and exacerbating osteoporosis.

Methods

hBMSCs were induced into osteoblasts at first, and the expression level of miR-137 at different time points was detected. After knockdown and overexpression of miR-137, the effect of miR-137 on the osteogenic differentiation of hBMSCs was examined through alkaline phosphatase (ALP) staining and Alizarin Red staining. Western blotting was performed to detect the expression of runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway. Bioinformatics websites were used to predict the target binding sites for miR-137 and KDM4A, and the

Purpose

As the global population ages rapidly, osteoporotic fractures have become an important public health problem. Previous studies have suggested that miR-137 is involved in the regulation of bone formation, but its specific regulatory mechanism remains unclear. In this study, we aimed to explore the expression, role, and regulatory mechanism of miR-137 in the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs).

Results

The expression of miR-137 decreased during osteogenic differentiation. Knockdown of miR-137 expression increased the osteogenic ability of hBMSCs, while overexpression of it weakened the ability. Through the activation of the TLR4/NF-κB pathway, miR-137 inhibited osteogenic differentiation. KDM4A was identified as a predicted target gene of miR-137. After knocking down KDM4A expression, the osteogenic ability of hBMSCs was diminished, and the TLR4/NF-κB pathway was activated. Furthermore, the osteogenic ability of hBMSCs was partially restored and the activation level of TLR4/NF-κB was reduced after miR-137 knockdown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。