Construction of immune-related signature and identification of S100A14 determining immune-suppressive microenvironment in pancreatic cancer

胰腺癌免疫相关标记的构建及S100A14决定免疫抑制微环境的鉴定

阅读:4
作者:Chengcheng Wang #, Yuan Chen #, Yin Xinpeng #, Ruiyuan Xu, Jianlu Song, Rexiati Ruze, Qiang Xu, Yupei Zhao

Abstract

Pancreatic cancer (PC) is a highly lethal and aggressive disease with its incidence and mortality quite discouraging. A robust prognostic signature and novel biomarkers are urgently needed for accurate stratification of the patients and optimization of clinical decision-making. Since the critical role of immune microenvironment in the progression of PC, a prognostic signature based on seven immune-related genes was established, which was validated in The Cancer Genome Atlas (TCGA) training set, TCGA testing set, TCGA entire set and GSE71729 set. Furthermore, S100A14 (S100 Calcium Binding Protein A14) was identified as the gene occupying the most paramount position in risk signature. According to the GSEA, CIBERSORT and ESTIMATE algorithm, S100A14 was mainly associated with lower proportion of CD8 + T cells and higher proportion of M0 macrophages in PC tissue. Meanwhile, analysis of single-cell dataset CRA001160 revealed a significant negative correlation between S100A14 expression in PC cells and CD8 + T cell infiltration, which was further confirmed by tissue microenvironment landscape imaging and machine learning-based analysis in our own PUMCH cohort. Additionally, analysis of a pan-pancreatic cancer cell line illustrated that S100A14 might inhibit CD8 + T cell activation via the upregulation of PD-L1 expression in PC cells, which was also verified by the immunohistochemical results of PUMCH cohort. Finally, tumor mutation burden analysis and immunophenoscore algorithm revealed that patients with high S100A14 expression had a higher probability of responding to immunotherapy. In conclusion, our study established an efficient immune-related prediction model and identified the potential role of S100A14 in regulating the immune microenvironment and serving as a biomarker for immunotherapy efficacy prediction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。