Perilipin 5 Deletion in Hepatocytes Remodels Lipid Metabolism and Causes Hepatic Insulin Resistance in Mice

肝细胞中 Perilipin 5 的缺失重塑了小鼠的脂质代谢并导致肝脏胰岛素抵抗

阅读:5
作者:Stacey N Keenan, Ruth C Meex, Jennifer C Y Lo, Andrew Ryan, Shuai Nie, Magdalene K Montgomery, Matthew J Watt

Abstract

Defects in hepatic lipid metabolism cause nonalcoholic fatty liver disease and insulin resistance, and these pathologies are closely linked. Regulation of lipid droplet metabolism is central to the control of intracellular fatty acid fluxes, and perilipin 5 (PLIN5) is important in this process. We examined the role of PLIN5 on hepatic lipid metabolism and systemic glycemic control using liver-specific Plin5-deficient mice (Plin5LKO ). Hepatocytes isolated from Plin5LKO mice exhibited marked changes in lipid metabolism characterized by decreased fatty acid uptake and storage, decreased fatty acid oxidation that was associated with reduced contact between lipid droplets and mitochondria, and reduced triglyceride secretion. With consumption of a high-fat diet, Plin5LKO mice accumulated intrahepatic triglyceride, without significant changes in inflammation, ceramide or diglyceride contents, endoplasmic reticulum stress, or autophagy. Instead, livers of Plin5LKO mice exhibited activation of c-Jun N-terminal kinase, impaired insulin signal transduction, and insulin resistance, which impaired systemic insulin action and glycemic control. Re-expression of Plin5 in the livers of Plin5LKO mice reversed these effects. Together, we show that Plin5 is an important modulator of intrahepatic lipid metabolism and suggest that the increased Plin5 expression that occurs with overnutrition may play an important role in preventing hepatic insulin resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。