Epithelial Galectin-3 Induced the Mitochondrial Complex Inhibition and Cell Cycle Arrest of CD8+ T Cells in Severe/Critical COVID-19

上皮细胞半乳糖凝集素-3 诱导重症/危重 COVID-19 患者线粒体复合物抑制和 CD8+ T 细胞细胞周期停滞

阅读:7
作者:Yudie Wang, Cheng Yang, Zhongyi Wang, Yi Wang, Qing Yan, Ying Feng, Yanping Liu, Juan Huang, Jingjiao Zhou

Abstract

Previous research suggested that the dramatical decrease in CD8+ T cells is a contributing factor in the poor prognosis and disease progression of COVID-19 patients. However, the underlying mechanisms are not fully understood. In this study, we conducted Single-cell RNA sequencing (scRNA-seq) and single-cell T cell receptor sequencing (scTCR-seq) analysis, which revealed a proliferative-exhausted MCM+FASLGlow CD8+ T cell phenotype in severe/critical COVID-19 patients. These CD8+ T cells were characterized by G2/M cell cycle arrest, downregulation of respiratory chain complex genes, and inhibition of mitochondrial biogenesis. CellChat analysis of infected lung epithelial cells and CD8+ T cells found that the galectin signaling pathway played a crucial role in CD8+ T cell reduction and dysfunction. To further elucidate the mechanisms, we established SARS-CoV-2 ORF3a-transfected A549 cells, and co-cultured them with CD8+ T cells for ex vivo experiments. Our results showed that epithelial galectin-3 inhibited the transcription of the mitochondrial respiratory chain complex III/IV genes of CD8+ T cells by suppressing the nuclear translocation of nuclear respiratory factor 1 (NRF1). Further findings showed that the suppression of NRF1 translocation was associated with ERK-related and Akt-related signaling pathways. Importantly, the galectin-3 inhibitor, TD-139, promoted nuclear translocation of NRF1, thus enhancing the expression of the mitochondrial respiratory chain complex III/IV genes and the mitochondrial biogenesis of CD8+ T cells. Our study provided new insights into the immunopathogenesis of COVID-19 and identified potential therapeutic targets for the prevention and treatment of severe/critical COVID-19 patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。