Inhibiting of GRASP65 Phosphorylation by DL-3-N-Butylphthalide Protects against Cerebral Ischemia-Reperfusion Injury via ERK Signaling

DL-3-N-丁基苯酞抑制 GRASP65 磷酸化可通过 ERK 信号传导防止脑缺血再灌注损伤

阅读:5
作者:Bei-Lei Zhu, Chen-Long Xie, Ning-Ning Hu, Xin-Bo Zhu, Chun-Feng Liu

Background and purpose

The aim of this study was to explore the role of DL-3-n-butylphthalide (NBP) in cerebral ischemia-reperfusion injury (CIRI) mice model. The involvement of extracellular signal-regulated kinase (ERK) signaling pathway was also investigated.

Conclusions

The current finding suggested that NBP protected the cerebrum from CIRI mediated by inhibiting the ERK signaling pathway and subsequently reducing GRASP65 phosphorylation.

Methods

All mice were divided into five groups: sham-operated group, CIRI group, NBP pretreatment group, NBP treatment group, and NBP pretreatment + treatment group. The CIRI mice model was established by the use of the Pulsinelli four-vessel occlusion method. Pretreatment mice received NBP (90 mg/kg/d) three times a day within four days before reperfusion by gavage. Treatment mice received NBP (90 mg/kg/d) three times a day within five days after reperfusion by gavage. We detected the infarction area, the neurological severity, and the superoxide dismutase and malondialdehyde levels. Furthermore, we observed the expressions of GRASP65, phosphorylation of GRASP65 (pGRASP65), ERK, and phosphorylation of ERK (pERK) by the use of Western blotting.

Purpose

The aim of this study was to explore the role of DL-3-n-butylphthalide (NBP) in cerebral ischemia-reperfusion injury (CIRI) mice model. The involvement of extracellular signal-regulated kinase (ERK) signaling pathway was also investigated.

Results

The result showed that the ERK pathway was activated in response to CIRI. NBP decreases the expressions of pERK and pGRASP65 following CIRI. Additionally, NBP could decrease MDA and increase SOD level in brain tissues. Decreased infarct volume was also observed in the NBP group. Thereby, NBP inhibited the activation of the ERK pathway induced by CIRI and reduced the GRASP65 phosphorylation. Conclusions: The current finding suggested that NBP protected the cerebrum from CIRI mediated by inhibiting the ERK signaling pathway and subsequently reducing GRASP65 phosphorylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。