Revealing Dynamic Protein Acetylation across Subcellular Compartments

揭示亚细胞区室中的动态蛋白质乙酰化

阅读:6
作者:Josue Baeza, Alexis J Lawton, Jing Fan, Michael J Smallegan, Ian Lienert, Tejas Gandhi, Oliver M Bernhardt, Lukas Reiter, John M Denu

Abstract

Protein acetylation is a widespread post-translational modification implicated in many cellular processes. Recent advances in mass spectrometry have enabled the cataloging of thousands of sites throughout the cell; however, identifying regulatory acetylation marks have proven to be a daunting task. Knowledge of the kinetics and stoichiometry of site-specific acetylation is an important factor to uncover function. Here, an improved method of quantifying acetylation stoichiometry was developed and validated, providing a detailed landscape of dynamic acetylation stoichiometry within cellular compartments. The dynamic nature of site-specific acetylation in response to serum stimulation was revealed. In two distinct human cell lines, growth factor stimulation led to site-specific, temporal acetylation changes, revealing diverse kinetic profiles that clustered into several groups. Overlap of dynamic acetylation sites among two different human cell lines suggested similar regulatory control points across major cellular pathways that include splicing, translation, and protein homeostasis. Rapid increases in acetylation on protein translational machinery suggest a positive regulatory role under progrowth conditions. Finally, higher median stoichiometry was observed in cellular compartments where active acetyltransferases are well described. Data sets can be accessed through ProteomExchange via the MassIVE repository (ProteomExchange: PXD014453; MassIVE: MSV000084029).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。