The mechanosensitive BKα/β1 channel localizes to cilia of principal cells in rabbit cortical collecting duct (CCD)

机械敏感的 BKα/β1 通道定位于兔皮质集合管 (CCD) 主细胞的纤毛

阅读:14
作者:Rolando Carrisoza-Gaytán, Lijun Wang, Carlos Schreck, Thomas R Kleyman, Wen-Hui Wang, Lisa M Satlin

Abstract

Within the CCD of the distal nephron of the rabbit, the BK (maxi K) channel mediates Ca2+- and/or stretch-dependent flow-induced K+ secretion (FIKS) and contributes to K+ adaptation in response to dietary K+ loading. An unresolved question is whether BK channels in intercalated cells (ICs) and/or principal cells (PCs) in the CCD mediate these K+ secretory processes. In support of a role for ICs in FIKS is the higher density of immunoreactive apical BKα (pore-forming subunit) and functional BK channel activity than detected in PCs, and an increase in IC BKα expression in response to a high-K+ diet. PCs possess a single apical cilium which has been proposed to serve as a mechanosensor; direct manipulation of cilia leads to increases in cell Ca2+ concentration, albeit of nonciliary origin. Immunoperfusion of isolated and fixed CCDs isolated from control K+-fed rabbits with channel subunit-specific antibodies revealed colocalization of immunodetectable BKα- and β1-subunits in cilia as well as on the apical membrane of cilia-expressing PCs. Ciliary BK channels were more easily detected in rabbits fed a low-K+ vs. high-K+ diet. Single-channel recordings of cilia revealed K+ channels with conductance and kinetics typical of the BK channel. The observations that 1) FIKS was preserved but 2) the high-amplitude Ca2+ peak elicited by flow was reduced in microperfused CCDs subject to pharmacological deciliation suggest that cilia BK channels do not contribute to K+ secretion in this segment, but that cilia serve as modulators of cell signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。