Neuronal Nav1.8 Channels as a Novel Therapeutic Target of Acute Atrial Fibrillation Prevention

神经元 Nav1.8 通道作为急性心房颤动预防的新型治疗靶点

阅读:5
作者:XiaoMeng Chen, LiLei Yu, ShaoBo Shi, Hong Jiang, CongXin Huang, Mayurika Desai, YiGang Li, Hector Barajas-Martinez, Dan Hu

Background

Ganglionated plexus have been developed as additional ablation targets to improve the outcome of atrial fibrillation (AF) besides pulmonary vein isolation. Recent studies implicated an intimate relationship between neuronal sodium channel Nav1.8 (encoded by SCN10A) and AF. The underlying mechanism between Nav1.8 and AF remains unclear. This study aimed to determine the role of Nav1.8 in cardiac electrophysiology in an acute AF model and explore possible therapeutic targets.

Conclusions

Our study demonstrates that Nav1.8 could exert its effect on electrophysiological characteristics through cardiac ganglionated plexus. It indicates that Nav1.8 is a novel target in understanding cardiac electrophysiology and SCN10A-related arrhythmias.

Results

Immunohistochemical study was used on canine cardiac ganglionated plexus. Both Nav1.5 and Nav1.8 were expressed in ganglionated plexus with canonical neuronal markers. Sixteen canines were randomly administered either saline or the Nav1.8 blocker A-803467. Electrophysiological study was compared between the 2 groups before and after 6-hour rapid atrial pacing. Compared with the control group, administration of A-803467 decreased the incidence of AF (87.5% versus 25.0%, P<0.05), shortened AF duration, and prolonged AF cycle length. A-803467 also significantly suppressed the decrease in the effective refractory period and the increase in effective refractory period dispersion and cumulative window of vulnerability caused by rapid atrial pacing in all recording sites. Patch clamp study was performed under 100 nmol/L A-803467 in TSA201 cells cotransfected with SCN10A-WT, SCN5A-WT, and SCN3B-WT. INa,P was reduced by 45.34% at -35 mV, and INa,L by 68.57% at -20 mV. Evident fast inactivation, slow recovery, and use-dependent block were also discovered after applying the drug. Conclusions: Our study demonstrates that Nav1.8 could exert its effect on electrophysiological characteristics through cardiac ganglionated plexus. It indicates that Nav1.8 is a novel target in understanding cardiac electrophysiology and SCN10A-related arrhythmias.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。