Interleukin-1β Disruption Protects Male Mice From Heart Failure With Preserved Ejection Fraction Pathogenesis

白细胞介素-1β 破坏可保护雄性小鼠免于心力衰竭并保留射血分数发病机制

阅读:5
作者:Balaji K Srinivas, Aya Bourdi, Jacob D O'Regan, Kumar D Malavalli, Nour-Eddine Rhaleb, Souad Belmadani, Khalid Matrougui

Abstract

Background Heart failure with preserved ejection fraction (HFpEF) is a significant unmet need in cardiovascular medicine and remains an untreatable cardiovascular disease. The role and mechanism of interleukin-1β in HFpEF pathogenesis are poorly understood. Methods and Results C57/Bl6J and interleukin-1β-/- male mice were randomly divided into 4 groups. Groups 1 and 2: C57/Bl6J and interleukin-1β-/- mice were fed a regular diet for 4 months and considered controls. Groups 3 and 4: C57/Bl6 and interleukin-1β-/- mice were fed a high-fat diet with N[w]-nitro-l-arginine methyl ester (endothelial nitric oxide synthase inhibitor, 0.5 g/L) in the drinking water for 4 months. We measured body weight, blood pressure, diabetes status, cardiac function/hypertrophy/inflammation, fibrosis, vascular endothelial function, and signaling. C57/Bl6 fed a high-fat diet and N[w]-nitro-l-arginine methyl ester in the drinking water for 4 months developed HFpEF pathogenesis characterized by obesity, diabetes, hypertension, cardiac hypertrophy, lung edema, low running performance, macrovascular and microvascular endothelial dysfunction, and diastolic cardiac dysfunction but no change in cardiac ejection fraction compared with control mice. Interestingly, the genetic disruption of interleukin-1β protected mice from HFpEF pathogenesis through the modulation of the inflammation and endoplasmic reticulum stress mechanisms. Conclusions Our data suggest that interleukin-1β is a critical driver in the development of HFpEF pathogenesis, likely through regulating inflammation and endoplasmic reticulum stress pathways. Our findings provide a potential therapeutic target for HFpEF treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。