Adenosine A2B receptor down-regulates metabotropic glutamate receptor 5 in astrocytes during postnatal development

腺苷 A2B 受体在出生后发育过程中下调星形胶质细胞中的代谢型谷氨酸受体 5

阅读:5
作者:Masayoshi Tanaka, Eiji Shigetomi, Bijay Parajuli, Hiroaki Nagatomo, Youichi Shinozaki, Yuri Hirayama, Kozo Saito, Yuto Kubota, Yosuke Danjo, Ji Hwan Lee, Sun Kwang Kim, Junichi Nabekura, Schuichi Koizumi

Abstract

Metabotropic glutamate receptor 5 (mGluR5) in astrocytes is a key molecule for controlling synapse remodeling. Although mGluR5 is abundant in neonatal astrocytes, its level is gradually down-regulated during development and is almost absent in the adult. However, in several pathological conditions, mGluR5 re-emerges in adult astrocytes and contributes to disease pathogenesis by forming uncontrolled synapses. Thus, controlling mGluR5 expression in astrocyte is critical for several diseases, but the mechanism that regulates mGluR5 expression remains unknown. Here, we show that adenosine triphosphate (ATP)/adenosine-mediated signals down-regulate mGluR5 in astrocytes. First, in situ Ca2+ imaging of astrocytes in acute cerebral slices from post-natal day (P)7-P28 mice showed that Ca2+ responses evoked by (S)-3,5-dihydroxyphenylglycine (DHPG), a mGluR5 agonist, decreased during development, whereas those evoked by ATP or its metabolite, adenosine, increased. Second, ATP and adenosine suppressed expression of the mGluR5 gene, Grm5, in cultured astrocytes. Third, the decrease in the DHPG-evoked Ca2+ responses was associated with down-regulation of Grm5. Interestingly, among several adenosine (P1) receptor and ATP (P2) receptor genes, only the adenosine A2B receptor gene, Adora2b, was up-regulated in the course of development. Indeed, we observed that down-regulation of Grm5 was suppressed in Adora2b knockout astrocytes at P14 and in situ Ca2+ imaging from Adora2b knockout mice indicated that the A2B receptor inhibits mGluR5 expression in astrocytes. Furthermore, deletion of A2B receptor increased the number of excitatory synapse in developmental stage. Taken together, the A2B receptor is critical for down-regulation of mGluR5 in astrocytes, which would contribute to terminate excess synaptogenesis during development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。