Pulmonary endothelial NEDD9 and the prothrombotic pathophenotype of acute respiratory distress syndrome due to SARS-CoV-2 infection

肺内皮 NEDD9 与 SARS-CoV-2 感染引起的急性呼吸窘迫综合征的促血栓病理表型

阅读:4
作者:George A Alba, Andriy O Samokhin, Rui-Sheng Wang, Bradley M Wertheim, Kathleen J Haley, Robert F Padera, Sara O Vargas, Ivan O Rosas, Lida P Hariri, Angela Shih, Boyd Taylor Thompson, Richard N Mitchell, Bradley A Maron

Abstract

The pathobiology of in situ pulmonary thrombosis in acute respiratory distress syndrome (ARDS) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is incompletely characterized. In human pulmonary artery endothelial cells (HPAECs), hypoxia increases neural precursor cell expressed, developmentally downregulated 9 (NEDD9) and induces expression of a prothrombotic NEDD9 peptide (N9P) on the extracellular plasma membrane surface. We hypothesized that the SARS-CoV-2-ARDS pathophenotype involves increased pulmonary endothelial N9P. Paraffin-embedded autopsy lung specimens were acquired from patients with SARS-CoV-2-​​​​​​ARDS (n = 13), ARDS from other causes (n = 10), and organ donor controls (n = 5). Immunofluorescence characterized the expression of N9P, fibrin, and transcription factor 12 (TCF12), a putative binding target of SARS-CoV-2 and known transcriptional regulator of NEDD9. We performed RNA-sequencing on normal HPAECs treated with normoxia or hypoxia (0.2% O2) for 24 h. Immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) profiled protein-protein interactions involving N9P relevant to thrombus stabilization. Hypoxia increased TCF12 messenger RNA significantly compared to normoxia in HPAECs in vitro (+1.19-fold, p = 0.001; false discovery rate = 0.005), and pulmonary endothelial TCF12 expression was increased threefold in SARS-CoV-2-ARDS versus donor control lungs (p < 0.001). Compared to donor controls, pulmonary endothelial N9P-fibrin colocalization was increased in situ in non-SARS-CoV-2-ARDS and SARS-CoV-2-ARDS decedents (3.7 ± 1.2 vs. 10.3 ± 3.2 and 21.8 ± 4.0 arb. units, p < 0.001). However, total pulmonary endothelial N9P was increased significantly only in SARS-CoV-2-ARDS versus donor controls (15 ± 4.2 vs. 6.3 ± 0.9 arb. units, p < 0.001). In HPAEC plasma membrane isolates, IP-LC-MS identified a novel protein-protein interaction between NEDD9 and the β3-subunit of the αvβ3-integrin, which regulates fibrin anchoring to endothelial cells. In conclusion, lethal SARS-CoV-2-ARDS is associated with increased pulmonary endothelial N9P expression and N9P-fibrin colocalization in situ. Further investigation is needed to determine the pathogenetic and potential therapeutic relevance of N9P to the thrombotic pathophenotype of SARS-CoV-2-ARDS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。