Quantitative Proteomics Implicates Rictor/mTORC2 in Cell Adhesion

定量蛋白质组学表明 Rictor/mTORC2 与细胞粘附有关

阅读:8
作者:Hao Wang, Xianfeng Shao, Qian He, Chunqing Wang, Linhuan Xia, Dan Yue, Guoxuan Qin, Chenxi Jia, Ruibing Chen

Abstract

The mammalian target of rapamycin complex 2 (mTORC2) plays critical roles in various biological processes. To better understand the functions of mTORC2 and the underlying molecular mechanisms, we established a stable cell line with reduced Rictor, a specific component in mTORC2, and investigated the quantitative changes of the cellular proteome. As a result, we observed that 101 proteins were down-regulated and 50 proteins were up-regulated in Rictor knockdown cells. A protein-protein interaction network regulated by Rictor/mTORC2 was established, showing that Rictor/mTORC2 was involved in various cellular processes. Intriguingly, gene ontology analysis indicated that the proteome regulated by Rictor/mTORC2 was significantly involved with cell adhesion. Rictor knockdown affected the expressions of multiple cell adhesion associated molecules, e.g. integrin α-5 (ITGA5), transforming growth factor beta-1-induced transcript 1 protein (TGFB1I1), lysyl oxidase homologue 2 (LOXL2), etc. Further study suggested that Rictor/mTORC2 may regulate cell adhesion and invasion by modulating the expressions of these cell adhesion molecules through AKT. Taken together, this study maps the proteome regulated by Rictor/mTORC2 and reveals its role in promoting renal cancer cell invasion through modulating cell adhesion and migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。