From sequence to function: a new workflow for nitrilase identification

从序列到功能:腈水解酶鉴定的新工作流程

阅读:5
作者:Richard Egelkamp, Ines Friedrich, Robert Hertel, Rolf Daniel

Abstract

Nitrilases are industrially important biocatalysts due to their ability to degrade nitriles to carboxylic acids and ammonia. In this study, a workflow for simple and fast recovery of nitrilase candidates from metagenomes is presented. For identification of active enzymes, a NADH-coupled high-throughput assay was established. Purification of enzymes could be omitted as the assay is based on crude extract containing the expressed putative nitrilases. In addition, long incubation times were avoided by combining nitrile and NADH conversion in a single reaction. This allowed the direct measurement of nitrile degradation and provided not only insights into substrate spectrum and specificity but also in degradation efficiency. The novel assay was used for investigation of candidate nitrilase-encoding genes. Seventy putative nitrilase-encoding gene and the corresponding deduced protein sequences identified during sequence-based screens of metagenomes derived from nitrile-treated microbial communities were analyzed. Subsequently, the assay was applied to 13 selected candidate genes and proteins. Six of the generated corresponding Escherichia coli clones produced nitrilases that showed activity and one unusual nitrilase was purified and analyzed. The activity of the novel arylacetonitrilase Nit09 exhibited a broad pH range and a high long-term stability. The enzyme showed high activity for arylacetonitriles with a KM of 1.29 mM and a Vmax of 13.85 U/mg protein for phenylacetonitrile. In conclusion, we provided a setup for simple and rapid analysis of putative nitrilase-encoding genes from sequence to function. The suitability was demonstrated by identification, isolation, and characterization of the arylacetonitrilase. KEY POINTS: • A simple and fast high-throughput nitrilase screening was developed. • A set of putative nitrilases was successfully screened with the assay. • A novel arylacetonitrilase was identified, purified, and characterized in detail.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。