Whole lung tissue is the preferred sampling method for amplicon-based characterization of murine lung microbiota

全肺组织是基于扩增子表征小鼠肺微生物群的首选采样方法

阅读:6
作者:Jennifer M Baker, Kevin J Hinkle, Roderick A McDonald, Christopher A Brown, Nicole R Falkowski, Gary B Huffnagle, Robert P Dickson

Background

Low-biomass microbiome studies (such as those of the lungs, placenta, and skin) are vulnerable to contamination and sequencing stochasticity, which obscure legitimate microbial signal. While human lung microbiome studies have rigorously identified sampling strategies that reliably capture microbial signal from these low-biomass microbial communities, the optimal sampling strategy for characterizing murine lung microbiota has not been empirically determined. Performing accurate, reliable characterization of murine lung microbiota and distinguishing true microbial signal from noise in these samples will be critical for further mechanistic microbiome studies in mice.

Conclusions

An ecology-based analytical approach discriminates signal from noise in this low-biomass microbiome study and identifies whole lung tissue as the preferred specimen type for murine lung microbiome studies. Sequencing, analysis, and reporting of potential source communities, including negative control specimens and contiguous biological sites, are crucial for biological interpretation of low-biomass microbiome studies, independent of specimen type. Video abstract.

Results

Using an analytic approach grounded in microbial ecology, we compared bacterial DNA from the lungs of healthy adult mice collected via two common sampling approaches: homogenized whole lung tissue and bronchoalveolar lavage (BAL) fluid. We quantified bacterial DNA using droplet digital PCR, characterized bacterial communities using 16S rRNA gene sequencing, and systematically assessed the quantity and identity of bacterial DNA in both specimen types. We compared bacteria detected in lung specimens to each other and to potential source communities: negative (background) control specimens and paired oral samples. By all measures, whole lung tissue in mice contained greater bacterial signal and less evidence of contamination than did BAL fluid. Relative to BAL fluid, whole lung tissue exhibited a greater quantity of bacterial DNA, distinct community composition, decreased sample-to-sample variation, and greater biological plausibility when compared to potential source communities. In contrast, bacteria detected in BAL fluid were minimally different from those of procedural, reagent, and sequencing controls. Conclusions: An ecology-based analytical approach discriminates signal from noise in this low-biomass microbiome study and identifies whole lung tissue as the preferred specimen type for murine lung microbiome studies. Sequencing, analysis, and reporting of potential source communities, including negative control specimens and contiguous biological sites, are crucial for biological interpretation of low-biomass microbiome studies, independent of specimen type. Video abstract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。